CE

	EMC TEST REPORT For
	Tea-Energy China Limited
LF	ED Motion Sensor Ceiling Light
]	Model No.: CL-028-S-NW-00
Addition	al Model No: Please Refer To Page 59
Address Prepared by Address Tel Fax	 Tea-Energy China Limited 4th Floor, 0100029 Building, Xiawei Industrial Zone, Xiahu Community, Guanlan Town, Longhua District, Shenzhen, China Shenzhen LCS Compliance Testing Laboratory Ltd. 1/F., Xingyuan Industrial Tiny, Tongda Road, Bao'an Avenue, Bao'an District, Shenzhen, Guangdong, China (+86)755-82591330 (+86)755-82591332 www.LCS-cert.com webmaster@LCS-cert.com
Date of receipt of test sample	 Webhaster @ Deb cert.com October 10, 2014 1 Prototype October 10, 2014 - October 15, 2014 October 15, 2014

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 1 of 59

	EMC TEST REPORT EN 55015: 2013			
Limits and methods of measurem	ent of radio disturbance characteristic similar equipment	s of electrical lighting and		
Equipment for gener	EN 61547: 2009 al lighting purposes - EMC immunity	requirements		
Report Reference No:	LCS1412030151E	requirements		
Date Of Issue	October 15, 2014			
Testing Laboratory Name :	Shenzhen LCS Compliance Testing	g Laboratory Ltd.		
Address	1/F., Xingyuan Industrial Tiny, Tong Bao'an District, Shenzhen, Guangdo Full application of Harmonised stand	ng, China		
Testing Location/ Procedure:	Partial application of Harmonised state Other standard testing method			
Applicant's Name:	Tea-Energy China Limited			
Address:	4th Floor, 0100029 Building, Xiawe Community, Guanlan Town, Longhu	,		
Test Specification:				
Standard:	EN 55015: 2013 EN 61000-3-2: 2006+A1: 2009+A2: EN 61000-3-3: 2013 EN 61547: 2009	2009		
Test Report Form No	LCSEMC-1.0			
TRF Originator	Shenzhen LCS Compliance Testing	Laboratory Ltd.		
Master TRF	Dated 2011-03			
This publication may be reproduced SHENZHEN LCS COMPLIANCE owner and source of the material. S LTD. takes no responsibility for an	E TESTING LABORATORY LTD d in whole or in part for non-commerce TESTING LABORATORY LTD. is a HENZHEN LCS COMPLIANCE TE d will not assume liability for damage terial due to its placement and context	ial purposes as long as the acknowledged as copyright STING LABORATORY s resulting from the reader's		
Test Item Description::	LED Motion Sensor Ceiling Light			
Trade Mark:	QALEDO			
Model/ Type Reference:	CL-028-S-NW-00			
Ratings:	100-240V~, 50/60Hz, 28W			
Result:	Positive			
Compiled by:	Supervised by:	Approved by:		
York Wand	Danny Huang	Crowins Limg		
Yoyo Wang/ File administrators	Danny Huang/ Technique principal	Gavin Liang/ Manager		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 2 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 3 of 59

SHENZHEN LCS COMPLIANCE TESTING LABORATORY LTD.

EMC -- TEST REPORT

Test Report No. : LCS1412030151E

October 15, 2014 Date of issue

Type/Model	: CL-028-S-NW-00
EUT	: LED Motion Sensor Ceiling Light
Applicant	: Tea-Energy China Limited
Address	: 4th Floor, 0100029 Building, Xiawei Industrial Zone, Xiahu Community, Guanlan Town, Longhua District, Shenzhen, China
Telephone	: /
Fax	: /
Manufacturer	: Tea-Energy China Limited
Address	: 4th Floor, 0100029 Building, Xiawei Industrial Zone, Xiahu Community, Guanlan Town, Longhua District, Shenzhen, China
Telephone	:
Fax	:
Factory	: Tea-Energy China Limited
Address	: 4th Floor, 0100029 Building, Xiawei Industrial Zone, Xiahu Community, Guanlan Town, Longhua District, Shenzhen, China
Telephone	: /
Fax	: /

Test Result according to the standards on page 7:Positive

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

TABLE OF CONTENTS

Test Report Description	Page
1. SUMMARY OF STANDARDS AND RESULTS	7
1.1.Description of Standards and Results	7
1.2.Description of Performance Criteria	
2. GENERAL INFORMATION	9
2.1.Description of Device (EUT)	9
2.2.Description of Test Facility	
2.3.Statement of the measurement uncertainty	9
2.4.Measurement Uncertainty	
3. MEASURING DEVICES AND TEST EQUIPMENT	
3.2.Disturbance Power	11
3.3.Radiated Electromagnetic Disturbance	
3.4.Radiated Disturbance (Electric Field)	
3.5.Harmonic Current	11
3.6.Voltage fluctuation and Flicker	11
3.8.RF Field Strength Susceptibility	
3.9.Electrical Fast Transient/Burst	
3.10.Surge	
3.11.Conducted Susceptibility	
3.12.Power Frequency Magnetic Field Susceptibility	
3.13.Voltage Dips	
3.14. Voltage Short Interruptions	
4. POWER LINE CONDUCTED MEASUREMENT	
4.1.Block Diagram of Test Setup	
4.2.Conducted Power Line Emission Measurement Standard and Limits	
4.3.EUT Configuration on Test	
4.4.Operating Condition of EUT	
4.5.Test Procedure	
4.6.Test Results	
5. MAGNETIC FIELD EMISSION MEASUREMENT	
5.1.Block Diagram of Test Setup	
5.2. Magnetic Field Emission Measurement Standard and Limits	
5.3.EUT Configuration on Test	
5.4.Operating Condition of EUT	
5.5.Test Procedure	
5.6.Test Results	
6. RADIATED EMISSION MEASUREMENT	
6.1.Block Diagram of Test Setup	
6.2.Test Standard	
6.3.Radiated Emission Limits	
6.4.EUT Configuration on Test	20

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 4 of 59

6.5.Operating Condition of EUT	
6.6.Test Procedure	20
6.7.Test Results	20
7. HARMONIC CURRENT MEASUREMENT	
7.1.Block Diagram of Test Setup	
7.2.Test Standard	
7.3.Operating Condition of EUT	
7.4.Test Results	
8. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT	
8.1.Block Diagram of Test Setup	
8.2.Test Standard	
8.3.Operating Condition of EUT	
8.4.Test Results	
9. ELECTROSTATIC DISCHARGE TEST	
9.1.Block Diagram of Test Setup	
9.2.Test Standard	
9.3.Severity Levels and Performance Criterion	
9.4.EUT Configuration on Test	
9.5.Operating Condition of EUT	
9.6.Test Procedure	
9.7.Test Results	
10. RF FIELD STRENGTH SUSCEPTIBILITY TEST	
10. RF FIELD STRENGTH SUSCEPTIBILITY TEST 10.1.Block Diagram of Test Setup	
10.1.Block Diagram of Test Setup	
10.1.Block Diagram of Test Setup 10.2.Test Standard	
10.1.Block Diagram of Test Setup10.2.Test Standard10.3.Severity Levels and Performance Criterion	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 10.7.Test Results 	
 10.1.Block Diagram of Test Setup	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 10.7.Test Results 11. ELECTRICAL FAST TRANSIENT/BURST TEST 11.1.Block Diagram of Test Setup	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 10.7.Test Results 11. ELECTRICAL FAST TRANSIENT/BURST TEST 11.Block Diagram of Test Setup 11.2.Test Standard 11.3.Severity Levels and Performance Criterion 11.4.EUT Configuration on Test 	
 10.1.Block Diagram of Test Setup	
 10.1.Block Diagram of Test Setup	32 32 32 33 33 33 33 33 33 33 33 35 35 35 35 35
 10.1.Block Diagram of Test Setup	32 32 32 33 33 33 33 33 33 33 33 35 35 35 35 35
 10.1.Block Diagram of Test Setup	
 10.1.Block Diagram of Test Setup	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 10.7.Test Results 11. ELECTRICAL FAST TRANSIENT/BURST TEST 11.1.Block Diagram of Test Setup 11.2.Test Standard 11.3.Severity Levels and Performance Criterion 11.4.EUT Configuration on Test 11.5.Operating Condition of EUT 11.6.Test Procedure 11.7.Test Results 12. SURGE IMMUNITY TEST 12.1.Block Diagram of Test Setup 12.2.Test Standard 	
 10.1.Block Diagram of Test Setup 10.2.Test Standard 10.3.Severity Levels and Performance Criterion 10.4.EUT Configuration on Test 10.5.Operating Condition of EUT 10.6.Test Procedure 10.7.Test Results 11. ELECTRICAL FAST TRANSIENT/BURST TEST 11.1.Block Diagram of Test Setup 11.2.Test Standard 11.3.Severity Levels and Performance Criterion 11.4.EUT Configuration on Test 11.5.Operating Condition of EUT 11.6.Test Procedure 11.7.Test Results 12. SURGE IMMUNITY TEST 12.1.Block Diagram of Test Setup 	32 32 32 33 33 33 33 33 33 33 33 33 33 3

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 5 of 59

12.5.Operating Condition of EUT	
12.6.Test Procedure	
12.7.Test Results	
13. INJECTED CURRENTS SUSCEPTIBILITY TEST	
13.1.Block Diagram of Test Setup	41
13.2.Test Standard	41
13.3.Severity Levels and Performance Criterion	41
13.4.EUT Configuration on Test	41
13.5.Operating Condition of EUT	42
13.6.Test Procedure	42
13.7.Test Results	42
14. MAGNETIC FIELD IMMUNITY TEST	
14.1.Block Diagram of Test Setup	44
14.2.Test Standard	44
14.3.Severity Levels and Performance Criterion	44
14.4.EUT Configuration on Test	44
14.5.Operating Condition of EUT	45
14.6.Test Procedure	45
14.7.Test Results	45
15. VOLTAGE DIPS AND INTERRUPTIONS TEST	
15.1.Block Diagram of Test Setup	
15.2.Test Standard	47
15.3.Severity Levels and Performance Criterion	
15.4.EUT Configuration on Test	47
15.5.Operating Condition of EUT	
15.6.Test Procedure	
15.7.Test Results	
16. PHOTOGRAPH	
16.1. Photo of Power Line Conducted Measurement	
16.2. Photo of Radiated Electromagnetic Disturbance Measurement	
16.3. Photo of Radiated Measurement	
16.4. Photo of Harmonic & Flicker Measurement	
16.5. Photo of Electrostatic Discharge Test	
16.6. Photo of Electrical Fast Transient/Burst Test	
16.7. Photo of Surge Immunity Test	
16.8. Photo of Injected Currents Susceptibility Test	
16.9. Photo of Magnetic Field Immunity Test	
16.10. Photo of Voltage Dips and Short Interruptions Immunity Test	54
17. EXTERNAL AND INTERNAL PHOTOS OF THE EUT	
18. MANUFACTURER/ APPROVAL HOLDER DECLARATION	59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 6 of 59

1. SUMMARY OF STANDARDS AND RESULTS

1.1.Description of Standards and Results

The EUT have been tested according to the applicable standards as referenced below.

EMISSION (EN 55015: 2013)						
Description of Test Item		Limits	Results			
Conducted disturbance at mains terminals		EN 55015: 2013			PASS	
Magnetic field emission		EN 55015: 2013			PASS	
Radiated disturbance		EN 55015: 2013			PASS	
Harmonic current emissions	EN	61000-3-2: 2006+A1: 2009+A2: 2	2009	Class C	PASS	
Voltage fluctuations & flicker	EN 61000-3-3: 2013			PASS		
	IN	/MUNITY (EN 61547: 2009)				
Description of Test Item		Basic Standard	Performance Criteria		Results	
Electrostatic discharge (ESD)		EN 61000-4-2: 2009		В	PASS	
Radio-frequency, Continuous radiated disturbance		EN 61000-4-3: 2006+A1: 2008		А	PASS	
Electrical fast transient (EFT)		EN 61000-4-4: 2012	В		PASS	
Surge (Input a.c. power ports)		EN 61000-4-5: 2006	В		PASS	
Radio-frequency, Continuous conducted disturbance		EN 61000-4-6: 2013	A		PASS	
Power frequency magnetic field		EN 61000-4-8: 2010	51000-4-8: 2010		PASS	
Voltage dips, 30% reduction		EN 61000-4-11: 2004		С	PASS	
Voltage interruptions				В	PASS	
N/A is an abbreviation for Not Applicable.						

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 7 of 59

1.2.Description of Performance Criteria

General Performance Criteria

Examples of functions defined by the manufacturer to be evaluated during testing include, but are not limited to, the following:

- essential operational modes and states;
- tests of all peripheral access (hard disks, floppy disks, printers, keyboard, mouse, etc.);
- quality of software execution;
- quality of data display and transmission;
- quality of speech transmission.

1.2.1.Performance criterion A

The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacture when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.2.Performance criterion B

After the test, the equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed, after the application of the phenomena below a performance level specified by the manufacture, when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance.

During the test, degradation of performance is allowed. However, no change of operation state or stored data is allowed to persist after the test.

If the minimum performance level (or the permissible performance loss) is not specified by the manufacturer, then either of these may be deriver from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.

1.2.3.Performance criterion C

Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacture's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be loss.

2. GENERAL INFORMATION

EUT	: LED Motion Sensor Ceiling Light
Model Number	: CL-028-S-NW-00
Power Supply	: 100-240V~, 50/60Hz, 28W

2.2.Description of Test Facility

EMC Lab.	: Accredited by CNAS, April 28, 2013 The Certificate Registration Number. is L4595.
	Accredited by FCC, July 14, 2011 The Certificate Registration Number. is 899208.
	Accredited by Industry Canada, May. 02, 2011 The Certificate Registration Number. is 9642A-1
	Accredited by VCCI, Japan January 30, 2012 The Certificate Registration Number. is C-4260 and R-3804
	Accredited by ESMD, April 24, 2012 The Certificate Registration Number. is ARCB0108.
	Accredited by UL, July 25, 2013 The Certificate Registration Number. is 100571-492.
	Accredited by TUV, December 23, 2013 The Certificate Registration Number. is SCN1134
	Accredited by Intertek, October 30, 2013 The Certificate Registration Number. is 2011-RTL-L1-50.

2.3.Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 9 of 59

2.4. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
Dediction Uncentainty	:	30MHz~200MHz ±2.96dB		(1)
Radiation Uncertainty		200MHz~1000MHz	± 3.10 dB	(1)
Conduction Uncertainty :		150kHz~30MHz	±1.63dB	(1)
Power disturbance :		30MHz~300MHz	±1.60dB	(1)

(1). This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 10 of 59

3. MEASURING DEVICES AND TEST EQUIPMENT

3.1.Conducted Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2014/06/18
2	10dB Attenuator	SCHWARZBECK	OSPAM236	9729	2014/06/18
3	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2014/06/18
4	EMI Test Software	AUDIX	E3	N/A	2014/06/18

3.2.Disturbance Power

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2014/06/18
2	Absorbing clamp	ROHDE & SCHWARZ	MDS 21	4033	2014/10/28
3	EMI Test Software	AUDIX	E3	N/A	2014/06/18

3.3.Radiated Electromagnetic Disturbance

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	1011423	2014/06/18
2	Triple-loop Antenna	EVERFINE	LLA-2	11050003	2014/06/18
3	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2014/06/18
4	EMI Test Software	AUDIX	E3	N/A	2014/06/18

3.4. Radiated Disturbance (Electric Field)

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03CH03-HY	2014/02/04
2	EMI Test Receiver	ROHDE & SCHWARZ	ESPI	101840	2014/06/18
3	Log per Antenna	SCHWARZBECK	VULB9163	9163-470	2011/06/18
4	EMI Test Software	AUDIX	E3	N/A	2014/06/18
5	Positioning Controller	MF	MF-7082	/	2014/06/18

3.5.Harmonic Current

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2014/06/18

3.6. Voltage fluctuation and Flicker

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power Analyzer Test System	Voltech	PM6000	20000670053	2014/06/18
3.7.Electrostatic Discharge					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	ESD Simulator	KIKUSUI	KC001311	KES4021	2014/09/02

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 11 of 59

3.8.RF Field Strength Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	SIGNAL GENERATOR	HP	8648A	625U00573	2014/06/18
2	Amplifier	AR	500A100	17034	2014/06/18
3	Amplifier	AR	100W/1000M1	17028	2014/06/18
4	Isotropic Field Monitor	AR	FM2000	16829	2014/06/18
5	Isotropic Field Probe	AR	FP2000	16755	2014/06/18
6	Bi-conic Antenna	EMCO	3108	9507-2534	2014/06/18
7	By-log-periodic Antenna	AR	AT1080	16812	2014/06/18
8	EMS Test Software	ROHDE & SCHWARZ	ESK1	N/A	2014/06/18

3.9. Electrical Fast Transient/Burst

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Electrical fast transient(EFT)generator	3CTEST	EFT-4021	EC0461044	2014/01.20
2	Coupling Clamp	3CTEST	EFTC	EC0441098	2014/06/18

3.10.Surge

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Surge test system	3CTEST	SG5006G	EC5581070	2014/06/18
2	Coupling/decoupling network	3CTEST	SGN-5010G	CS5591033	2014/06/18

3.11.Conducted Susceptibility

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Simulator	EMTEST	CIT-10	A126A1195	2014/06/18
2	CDN	EMTEST	CDN-M2	A2210177	2014/06/18
3	CDN	EMTEST	CDN-M3	A2210177	2014/06/18
4	Attenuator	EMTEST	ATT6	50FP-006-H3B	2014/06/18

3.12. Power Frequency Magnetic Field Susceptibility

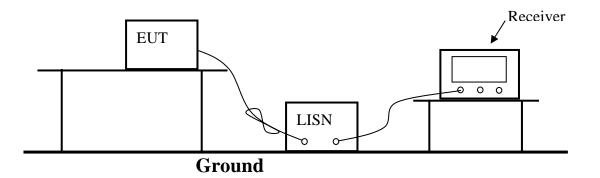
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Power frequency mag-field generator System	EVERFINE	EMS61000-8K	906003	2014/06/18

3.13.Voltage Dips

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2014/06/18

3.14. Voltage Short Interruptions

Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal.
1	Voltage dips and up generator	3CTEST	VDG-1105G	EC0171014	2014/06/18


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 12 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 13 of 59

Report No.: LCS1412030151E

4. POWER LINE CONDUCTED MEASUREMENT

4.1.Block Diagram of Test Setup

4.2.Conducted Power Line Emission Measurement Standard and Limits

4.2.1.Standard:

EN 55015: 2013

4.2.2.Limits

Frequency	At mains terminals (dBµV)						
Trequency	Quasi-peak Level	Average Level					
9kHz ~ 50kHz	110						
50kHz ~ 150kHz	90 ~ 80*						
150kHz ~ 0.5MHz	66 ~ 56*	56 ~ 46*					
0.5MHz ~ 5.0MHz	56	46					
5.0MHz ~ 30MHz	60	50					

1. At the transition frequency the lower limit applies.

2. * decreasing linearly with logarithm of the frequency.

4.3.EUT Configuration on Test

The configuration of the EUT is same as Section 3.1.

4.4.Operating Condition of EUT

- 4.4.1.Setup the EUT as shown in Section 4.1.
- 4.4.2.Turn on the power of all equipments.
- 4.4.3.Let the EUT work in test mode (On) and measure it.

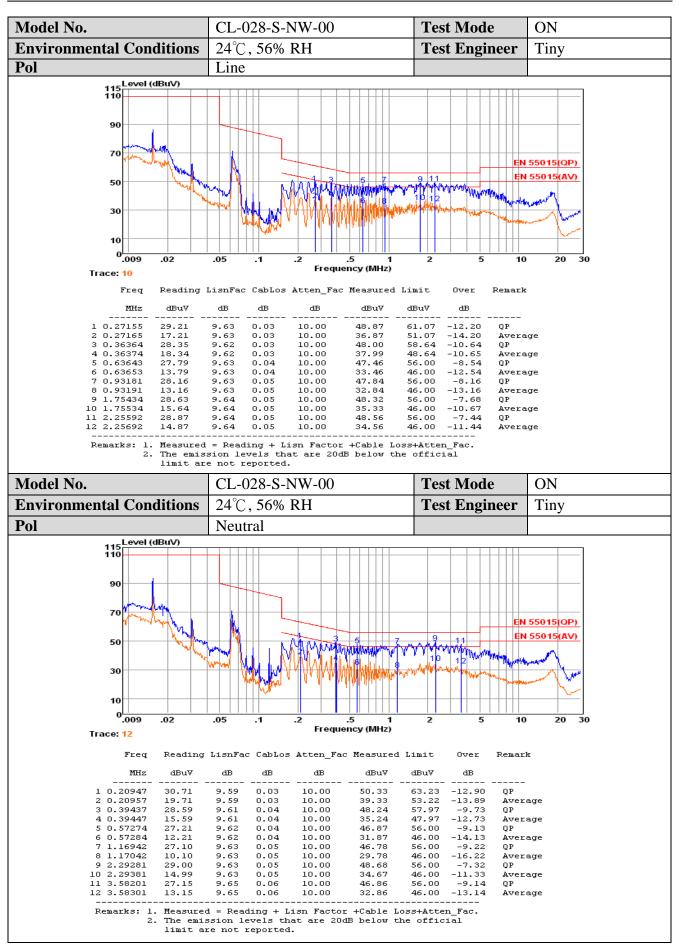
4.5.Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground and connected to the AC mains through a Line Impedance Stabilization Network (L.I.S.N.). This provided a 500hm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission according to the EN 55015 regulations during conducted emission measurement. And the voltage probe had been used for the load terminals measurement according to the EN 55015 standard.

The bandwidth of the test receiver is set at 200Hz in 9k~150kHz range and 9kHz in 150k~30MHz range.

The frequency range from 9kHz to 30MHz is checked.

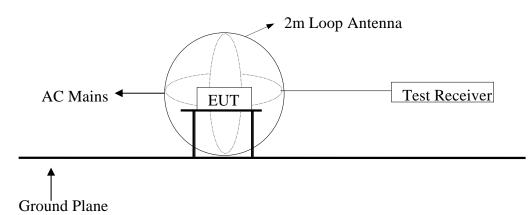
All the test results are listed in Section 4.6.


The frequency range from 9kHz to 30MHz is investigated.

4.6.Test Results

PASS.

The test result please refer to the next page.


Report No.: LCS1412030151E

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 15 of 59

5. MAGNETIC FIELD EMISSION MEASUREMENT

5.1.Block Diagram of Test Setup

5.2. Magnetic Field Emission Measurement Standard and Limits

5.2.1.Test Standard

EN 55015: 2013

5.2.2.Test Limits

Frequency	Limits for loop diameter (dBµA)
requency	2m
9kHz ~ 70kHz	88
70kHz ~ 150kHz	88 ~ 58*
150kHz ~ 3.0MHz	58 ~ 22*
3.0MHz ~ 30MHz	22

1. At the transition frequency the lower limit applies.

2. * decreasing linearly with logarithm of the frequency.

5.3.EUT Configuration on Test

The configuration of the EUT is same as Section 3.3.

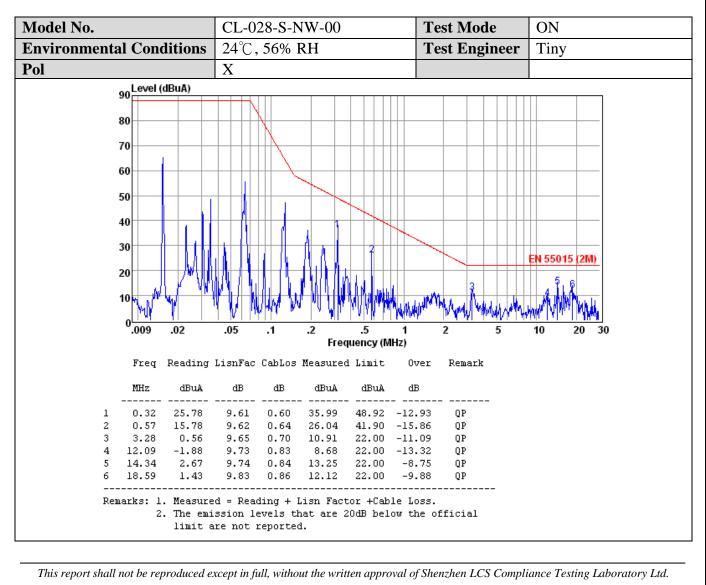
5.4.Operating Condition of EUT

Same as conducted measurement which is listed in Section 4.4, except the test set up replaced by Section 5.1.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 16 of 59

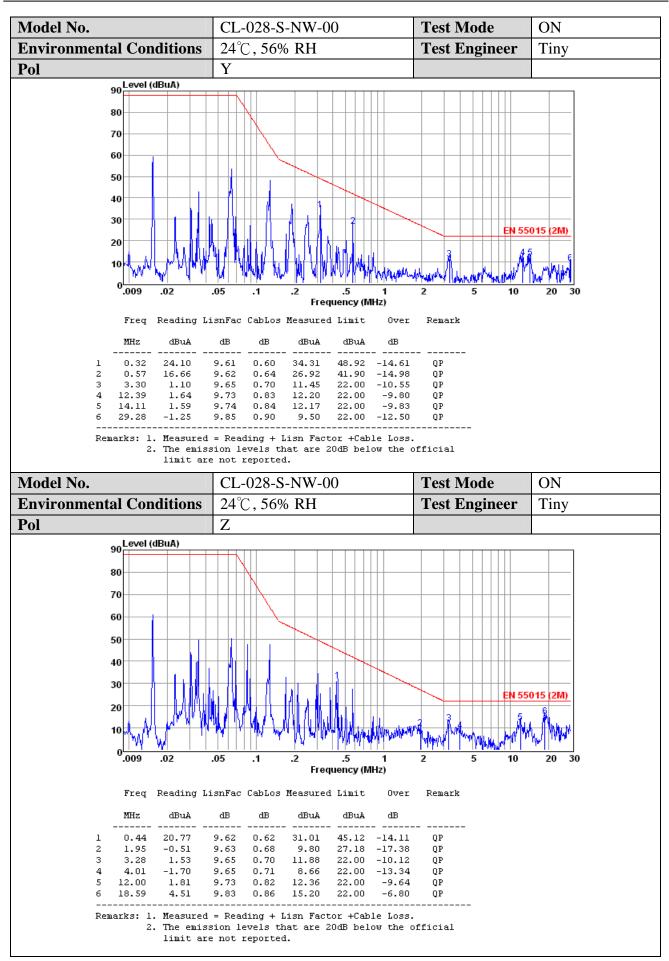
5.5.Test Procedure

The EUT is placed on a wood table in the center of a loop antenna. The induced current in the loop antenna is measured by means of a current probe and the test receiver. Three field components are checked by means of a coaxial switch.


The frequency range from 9kHz to 30MHz is investigated. The receiver is measured with the quasi-peak detector. For frequency band 9kHz to 150kHz, the bandwidth of the field strength meter is set at 200Hz. For frequency band 150kHz to 30MHz, the bandwidth is set at 9kHz.

All the test results are listed in Section 5.6.

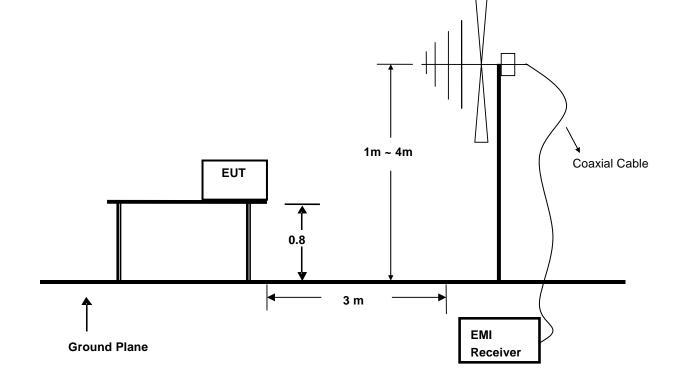
5.6.Test Results


PASS.

The frequency range from 9kHz to 30MHz is investigated.

Page 17 of 59

Report No.: LCS1412030151E


This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 18 of 59

antenna and the closed point of any part of the EUT.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 19 of 59

6. RADIATED EMISSION MEASUREMENT

6.1.Block Diagram of Test Setup

6.2.Test Standard

EN 55015: 2013

6.3.Radiated Emission Limits

All emanations from a class B device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified below:

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMIT
(MHz)	(Meters)	(dBµV/m)
30 ~ 230	3	40
230 ~ 300	3	47

Note: (1) The smaller limit shall apply at the combination point between two frequency bands.

(2) Distance refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the EUT.

6.4.EUT Configuration on Test

The EN 55015 regulations test method must be used to find the maximum emission during radiated emission measurement.

6.5.Operating Condition of EUT

6.5.1 Turn on the power.

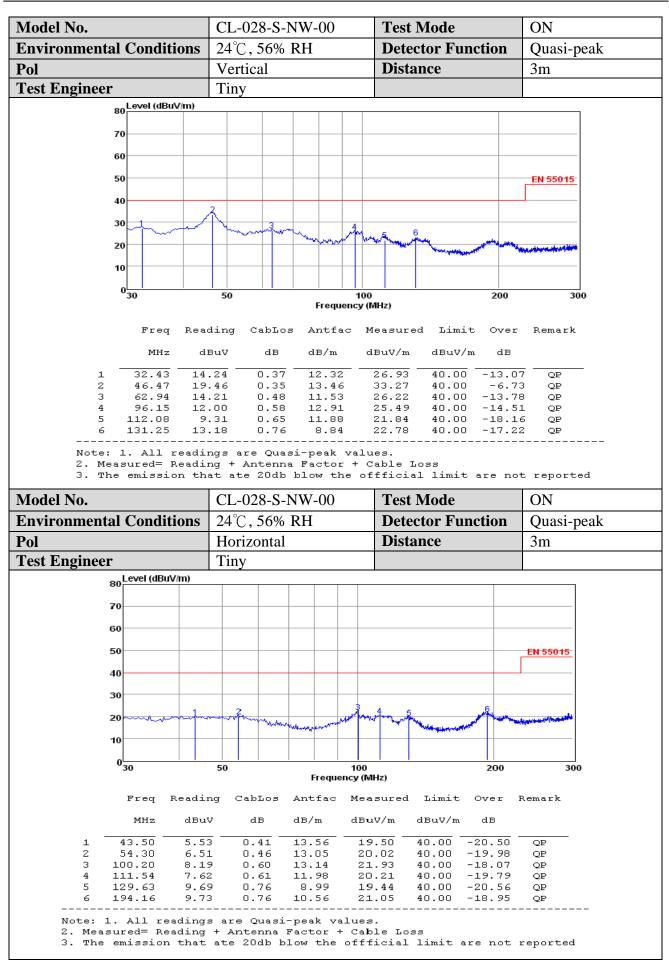
6.5.2 After that, let the EUT work in test mode (ON) and measure it.

6.6.Test Procedure

The EUT is placed on a turntable, which is 0.8 meter high above the ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down from 1 to 4 meters to find out the maximum emission level. By-log antenna (calibrated by Dipole Antenna) is used as a receiving antenna. Both horizontal and vertical polarization of the antenna is set on test.

The bandwidth of the Receiver is set at 120kHz.

The frequency range from 30MHz to 300MHz is investigated.


6.7.Test Results

PASS.

The test result please refer to the next page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 20 of 59

Report No.: LCS1412030151E

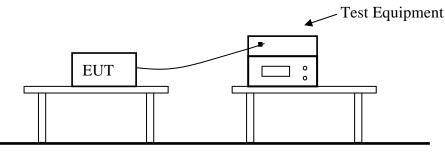
This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 21 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 22 of 59

7. HARMONIC CURRENT MEASUREMENT

7.1.Block Diagram of Test Setup

EN 61000-3-2: 2006+A1: 2009+A2: 2009


7.3. Operating Condition of EUT

Same as Section 4.4, except the test setup replaced by Section 7.1.

7.4.Test Results

PASS.

The test result please refer to the next page.

Report No.: LCS1412030151E

Type of Test: Limits: Power Analyzer:		Test Engineer	Гiny						
	EN61000:2006 Harmonics inc. in	terharmonics to EN61000-4-7:2	002						
Power Analyzer:	Class C > 25W								
	Voltech PM6000 SN: 2000067 Channel(s):	00523 Firmware version: v1.21	.07RC2						
	1. SN: 090015502053, 28 Adjusted Date: 22 JU	JN 2011. 2. SN:None Adjusted Date:None	e						
	3. SN:None Adjusted Date:None 4. SN:Nor	ne Adjusted Date:None							
	5. SN:None Adjusted Date:None 6. SN:Nor	ne Adjusted Date:None							
	Shunt(s):								
	1. SN: 091024301916, 4 Adjusted Date: 23 JUI	N 2011. 2. SN:None Adjusted Date:None							
	3. SN:None Adjusted Date:None 4. SN:Nor	ne Adjusted Date:None							
	5. SN:None Adjusted Date:None 6. SN:Nor	ne Adjusted Date:None							
AC Source:	Mains / Manual Source								
PASS									
Test Parameter De	etails	User Entered	Measured						
Test Parameter De Operating Frequenc	etails	50	49.9840						
Test Parameter De Operating Frequenc Operating Voltage:	etails	50 230	49.9840 229.4360						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power:	etails cy:	50 230 0.0000	49.9840 229.4360 29.7991						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Curre	etails cy:	50 230 0.0000 0.1300	49.9840 229.4360 29.7991 0.1308						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Curre Power Factor:	etails cy: nt:	50 230 0.0000	49.9840 229.4360 29.7991 0.1308 0.9628						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power:	etails cy: nt:	50 230 0.0000 0.1300	49.9840 229.4360 29.7991 0.1308						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Curre Power Factor: Average Input Curre Maximum POHC:	etails cy: nt:	50 230 0.0000 0.1300	49.9840 229.4360 29.7991 0.1308 0.9628 0.1347						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Curre Power Factor: Average Input Curre Maximum POHC: POHC Limit:	etails cy: nt:	50 230 0.0000 0.1300	49.9840 229.4360 29.7991 0.1308 0.9628 0.1347 0.0022						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Curre Power Factor: Average Input Curre	etails cy: nt:	50 230 0.0000 0.1300	49.9840 229.4360 29.7991 0.1308 0.9628 0.1347 0.0022 0.0123						
Test Parameter De Operating Frequenc Operating Voltage: Specified Power: Fundamental Currer Power Factor: Average Input Currer Maximum POHC: POHC Limit: Maximum THC:	etails cy: nt:	50 230 0.0000 0.1300 0.9800	49.9840 229.4360 29.7991 0.1308 0.9628 0.1347 0.0022 0.0123						

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 23 of 59

Report No.: LCS1412030151E

Voltech IEC6	51000-	3 Windo	ows Softwa	re 1.24.12						
Type of Test	:	Fluctu	ating Harn	nonics Test - Sour	ce Qualificatio	on (20	06)			
Power Analy	zer:	Volted	h PM600	0 SN: 20000670	0523 Firmwai	re ver	sion: v1	.21.07RC	2	
,		Channel	(s):							
				28 Adjusted Date: 22 JUN	1 2011 2 SN-Nor	ne Adi	usted Date:	None		
				-		-	usiou Duio.	Volic		
			-	Date:None 4. SN:None	-					
		5. SN:N	one Adjusted	Date:None 6. SN:None	Adjusted Date:No	ne				
		Shunt(s)	:							
		1. SN: 0	91024301916, 4	4 Adjusted Date: 23 JUN	2011. 2. SN:None	e Adjus	sted Date:No	one		
		3. SN:N	one Adjusted	Date:None 4. SN:None	Adjusted Date:Nor	ne				
		5 SN N	one Adjusted	Date:None 6. SN:None	Adjusted Date No	ne				
			-		/ lajuotou Duto. Ito					
AC Source:		wains	/ Manual S	Source						
Overall Resu	ılt:									
PAS	S									
			· .	N4 1	D :					
		NO	minal	Measured	Deviation	n	Allo	owed	Result	
							Dev	iation		
Supply Volta	ae	23	0.00V	229.44V	0.56V		4	60V	Pass	
	•									
Supply Frequ	lency	50	.00Hz	49.98Hz	0.02Hz		0.2	5Hz	Pass	
Crest Factor		1.	4100	1.4195	0.0095		+/-	0.01	Pass	
Harmonic		ading	Limit	Result	Harmonic		ading	Limit	Result	
2		10%	0.20%	Pass	3		05%	0.90%		
4		<u>)4%</u>	0.20%	Pass	5		<u>05%</u>	0.40%		
6 8		<u>)3%</u>)3%	0.20%	Pass	7 9		<u>05%</u> 04%	0.30% 0.20%		
o 10) <u>3%</u>)2%	0.20%	Pass Pass	9 11		04% 03%	0.20%		
12)2%	0.20%	Pass	13		03%	0.10%		
14		0 <u>2 /0</u> 01%	0.10%	Pass	15		04%	0.10%		
16		01%	0.10%	Pass	17		02%	0.10%		
18		01%	0.10%	Pass	19		02%	0.10%		
20		01%	0.10%	Pass	21		03%	0.10%		
22	0.0	01%	0.10%	Pass	23		01%	0.10%		
24		01%	0.10%	Pass	25		02%	0.10%		
26		01%	0.10%	Pass	27		03%	0.10%		
28		01%	0.10%	Pass	29		01%	0.10%		
30		<u>)1%</u>	0.10%	Pass	31		01%	0.10%		
32		<u>)1%</u>	0.10%	Pass	33		01%	0.10%		
34		<u>)1%</u>	0.10%	Pass	35		<u>01%</u>	0.10%		
36)1%	0.10%	Pass	37		03%	0.10%		
<u>38</u> 40)1%	0.10%	Pass	39	U.	03%	0.10%	Pass	
- /111	i 0.0	01%	0.10%	Pass				1		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 24 of 59

Report No.: LCS1412030151E

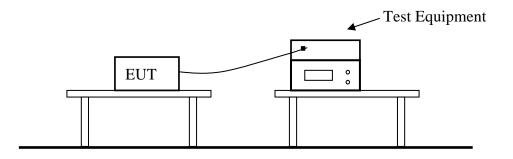
Voltech	IEC61	000-	.3 Wi	indov	vs So	oftwa	re 1.	.24.1	2											
Type of										orma	lised	Wor	st Ca	ise B	ar C	nart (2006)		
Power		er:	Vo		n PN							-irmv								
						2053, 2	28 Adju	usted D	ate: 22	JUN 2	011.	2. SN:	None	Adjust	ed Dat	e:None				
												ed Date		,						
												ed Date								
			Shu	unt(s):																
			1. 5	SN: 091	02430	1916, 4	Adjus	sted Da	te: 23 .	JUN 20	11. 2	2. SN:N	one A	djusted	d Date:	None				
			3. 5	SN:Non	e Ad	justed [Date:N	one	4. SN:N	lone /	Adjuste	d Date:	None							
			5. S	SN:Non	e Ad	justed [Date:N	one	6. SN:N	lone /	Adjuste	d Date:	None							
AC Sou	irce:		Ма	ains /	Man	nual S	Sourc	e												
Overall	Result	:																		
P	ASS	5																		
																				<u></u>
Class			Cla	ass C	2 > 2	5W														
Class N	/lultiplie	r	1																	
																				– 2.0 Limit
																				– 1.5 Limit
sht																				
nrre																				
วี																				
sec	<u> </u>																			– Limit
nalı																				
Normalised Current																				
2																				
																	100.000			
	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31	33	35	37	39	_
									Ha	armor	nic									

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 25 of 59

Report No.: LCS1412030151E

Volte	ch IFC	61000-	3 Wind	ows Soft	ware 1	24 12										
	of Tes			uating Ha				st Cas	e Table	(2006))					
•••	er Analy			•						•		.21.07RC	\sim			
FUwe	FI Analy	y201.			000 31	1. 200	000070	0020	i iiiiiwa		1011. V I	.21.0710	2			
				Channel(s):												
				1. SN: 090015502053, 28 Adjusted Date: 22 JUN 2011. 2. SN:None Adjusted Date:None 3. SN:None Adjusted Date:None 4. SN:None Adjusted Date:None												
			3. SN:N	Ione Adjust	ed Date:No	one 4	. SN:None	Adjust	ed Date:N	one						
			5. SN:N	lone Adjust	ed Date:No	one 6	SN:None	Adjust	ed Date:N	one						
			Shunt(s	s):												
			1. SN: (09102430191	6,4 Adjus	ted Date	e: 23 JUN	2011.	2. SN:Nor	e Adjuste	ed Date:N	one				
			3. SN:N	lone Adjust	ed Date:No	one 4	SN:None	Adjuste	ed Date:No	one						
			5. SN:N	lone Adjust	ed Date:No	one 6	SN:None	Adiuste	ed Date:No	one						
	Source:			-												
			wan	s / Manua	al Sourc	e										
Over	all Res	ult:														
	PAS	S														
Class					V.											
Class	5		Class	s C > 25V	V		_									
Class	s Multip	lier	1													
Lines	Limit d	L insit 0	A		May	-1.0	Dava	Lieren	Lineit 4	LimitO	A		Mari	-1.0	Dees	
Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass FAIL</th><th>Harm</th><th>Limit 1</th><th>Limit 2</th><th>Average Reading</th><th><l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass FAIL</th></l2<></th></l1></th></l2<></th></l1>	Max Reading	<l2< th=""><th>Pass FAIL</th><th>Harm</th><th>Limit 1</th><th>Limit 2</th><th>Average Reading</th><th><l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass FAIL</th></l2<></th></l1></th></l2<>	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass FAIL</th></l2<></th></l1>	Max Reading	<l2< th=""><th>Pass FAIL</th></l2<>	Pass FAIL	
2	2.600mA	3.900mA	0.197mA	N/A	0.221mA	N/A	N/A	3	38.22mA	57.32mA	4.583mA	N/A	4.782mA	N/A	N/A	
4	None	None	0.127mA		0.144mA		N/A	5	12.99mA	19.49mA	4.876mA	N/A	4.998mA	N/A	N/A	
6	None	None	0.131mA		0.146mA		N/A	7	9.099mA	13.65mA	1.462mA	N/A	1.517mA	N/A		
8	None	None	0.117mA		0.141mA		N/A	9	6.500mA	9.749mA	1.143mA	N/A			N/A	
10	None	None	0.114mA		0.128mA				0.300mA			19/3	1.175mA	N/A	N/A N/A	
12	None	None	0.173mA				N/A	11	3.900mA	5.849mA	0.656mA	N/A	1.175mA 0.718mA	N/A N/A		
14			0.175IIIA		0.195mA		N/A N/A	11 13			0.656mA 0.750mA				N/A	
14	None	None	0.106mA		0.195mA 0.121mA				3.900mA	5.849mA	0.750mA 0.493mA	N/A	0.718mA	N/A	N/A N/A	
16	None None	None	0.106mA 0.109mA		0.121mA 0.124mA		N/A N/A N/A	13 15 17	3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA	N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA	N/A N/A N/A N/A	N/A N/A N/A N/A	
16 18	None None	None None	0.106mA 0.109mA 0.113mA		0.121mA 0.124mA 0.128mA		N/A N/A N/A N/A	13 15 17 19	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA	N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA	N/A N/A N/A N/A	N/A N/A N/A N/A N/A	
16 18 20	None None None	None None None	0.106mA 0.109mA 0.113mA 0.106mA		0.121mA 0.124mA 0.128mA 0.119mA		N/A N/A N/A N/A	13 15 17 19 21	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA	N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA	N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A	
16 18 20 22	None None None None	None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA		N/A N/A N/A N/A N/A	13 15 17 19 21 23	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA	N/A N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA	N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24	None None None None	None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.154mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA		N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA	N/A N/A N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24 26	None None None None None	None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.154mA 0.105mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA 0.118mA		N/A N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25 27	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA 0.545mA	N/A N/A N/A N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA 0.561mA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24	None None None None	None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.154mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA		N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA	N/A N/A N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA	N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24 26 28	None None None None None None	None None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.102mA 0.154mA 0.105mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA 0.118mA 0.122mA		N/A N/A N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25 27 29	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA 0.545mA 0.165mA	N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA 0.561mA 0.196mA	N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24 26 28 30	None None None None None None None	None None None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.102mA 0.105mA 0.109mA 0.107mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA 0.118mA 0.122mA 0.118mA		N/A N/A N/A N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25 27 29 31	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA 0.545mA 0.165mA 0.343mA	N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA 0.561mA 0.196mA 0.433mA	N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A N/A N/A N/A N/A N/A N/A	
16 18 20 22 24 26 28 30 32	None None None None None None None	None None None None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.102mA 0.105mA 0.105mA 0.109mA 0.107mA 0.114mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.168mA 0.118mA 0.122mA 0.118mA 0.122mA		N/A N/A N/A N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25 27 29 31 33	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.545mA 0.165mA 0.343mA 1.009mA	N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA 0.561mA 0.196mA 0.433mA 1.122mA	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	
16 18 20 22 24 26 28 30 32 34	None None None None None None None None	None None None None None None None None	0.106mA 0.109mA 0.113mA 0.106mA 0.102mA 0.102mA 0.105mA 0.105mA 0.107mA 0.114mA 0.111mA		0.121mA 0.124mA 0.128mA 0.119mA 0.115mA 0.115mA 0.168mA 0.118mA 0.122mA 0.118mA 0.122mA 0.125mA		N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	13 15 17 19 21 23 25 27 29 31 33 35	3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA 3.900mA	5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA 5.849mA	0.750mA 0.493mA 0.931mA 0.632mA 0.300mA 0.305mA 0.693mA 0.545mA 0.165mA 0.343mA 1.009mA 1.242mA	N/A N/A	0.718mA 0.776mA 0.541mA 0.951mA 0.691mA 0.353mA 0.322mA 0.722mA 0.561mA 0.196mA 0.433mA 1.122mA 1.258mA	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A	

<L1 : Reading is below limit 1.


<L2 : Reading is below limit 2.

N/A : Harmonic current below 0.6% of rated current or 5mA, whichever is greater, are disregarded.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 26 of 59

8. VOLTAGE FLUCTUATIONS & FLICKER MEASUREMENT

8.1.Block Diagram of Test Setup

8.2.Test Standard

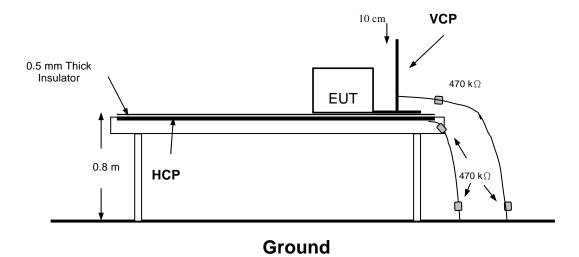
EN 61000-3-3: 2013

8.3. Operating Condition of EUT

Same as Section 4.4, except the test setup replaced by Section 8.1.

8.4.Test Results

PASS.


The test result please refer to the next page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 27 of 59

Model No.	CL-028-S-NW-0	0 Tes	st Engineer Tiny	
Voltech IEC61000	-3 Windows Software 1.2	4.12		
Type of Test:	Flickermeter Test - Tal	ole	•	
Power Analyzer:	Voltech PM6000 SN: Channel(s):	200006700523 Firm	ware Version: v1.21.0)7RC2
	1. SN: 090015502053, 28 Adjus	ted Date: 22 JUN 2011. 2. SN	:None Adjusted Date:None	
	3. SN:None Adjusted Date:Nor	ne 4. SN:None Adjusted Date	e:None	
	5. SN:None Adjusted Date:Nor	ne 6. SN:None Adjusted Date	e:None	
	Shunt(s):			
	1. SN: 091024301916, 4 Adjuste	ed Date: 23 JUN 2011. 2. SN:N	None Adjusted Date:None	
	3. SN:None Adjusted Date:Nor	ne 4. SN:None Adjusted Date	None	
	5. SN:None Adjusted Date:Nor	ne 6. SN:None Adjusted Date	None	
AC Source:	Mains / Manual Source)		
Overall Result:	Notes:			
	Measurement method	- Voltage		
PASS				
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.089	0.008	0.212	0

9. ELECTROSTATIC DISCHARGE TEST

9.1.Block Diagram of Test Setup

9.2.Test Standard

EN 61547: 2009 (EN 61000-4-2: 2009, Severity Level: Air Discharge: Level 3, ±8KV Contact Discharge: Level 2, ±4KV)

9.3. Severity Levels and Performance Criterion

9.3.1.Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	<u>±</u> 4
3.	±6	±8
4.	±8	±15
X	Special	Special

9.3.2.Performance criterion: **B**

9.4.EUT Configuration on Test

The configuration of EUT is listed in Section 3.7

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 29 of 59

9.5. Operating Condition of EUT

- 9.5.1.Setup the EUT as shown in Section 9.1.
- 9.5.2.Turn on the power of all equipments.
- 9.5.3.Let the EUT work in test mode (ON) and measure it.

9.6.Test Procedure

9.6.1.Air Discharge

This test is done on a non-conductive surfaces. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

Because the case of the EUT is metal surface, so it does not need to be tested.

9.6.2.Contact Discharge

All the procedure shall be same as Section 9.6.1. except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

9.6.3.Indirect Discharge For Horizontal Coupling Plane

At least 20 single discharges shall be applied to the horizontal coupling plane, at points on each side of the EUT. The discharge electrode positions vertically at a distance of 0.1m from the EUT and with the discharge electrode touching the coupling plane.

9.6.4.Indirect Discharge For Vertical Coupling Plane

At least 20 single discharge shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are completely illuminated.

9.7.Test Results

PASS.

Please refer to the following page.

Electrostatic Discharger Test Results

Standard	□ IEC 61000-4-2 ☑ EN 61000-4-2							
Applicant	Tea-Energy China Limited							
EUT	LED Motion Sensor Ceiling Light	Temperature	26℃					
M/N	CL-028-S-NW-00	Humidity	51%					
Criterion	В	Pressure	1021mbar					
Test Mode	ON	Test Engineer	Tiny					

		А	ir Discharge	e					
		Test Levels	5		Results				
Test Points	± 2KV	±4KV	± 8KV	Pass	Fail	Performance Criterion			
Front		\square	\square	\square		$\Box A \boxtimes B$			
Back		\square	\square	\square		$\Box A \boxtimes B$			
Left		\square	\square	\square		$\Box A \boxtimes B$			
Right	\square	\square	\square	\square		$\Box A \boxtimes B$			
Тор	\square	\square	\square	\square		$\Box A \boxtimes B$			
Bottom	\boxtimes	\boxtimes	\square	\square		$\Box A \boxtimes B$			
		Con	tact Discha	rge					
		Test Levels	5		Resu	lts			
Test Points	± 2 KV	7	±4 KV	Pass	Fail	Performance Criterion			
Front	\square		\boxtimes	\square					
Back	\square		\boxtimes	\boxtimes					
Left	\square		\boxtimes	\boxtimes		$\Box A \boxtimes B$			
Right	\square		\boxtimes	\boxtimes		$\Box A \boxtimes B$			
Тор	\boxtimes		\boxtimes	\boxtimes		$\Box A \boxtimes B$			
Bottom	\square		\boxtimes	\boxtimes					
]	Discharge T	o Horizonta	al Coupling	Plane				
		Test Levels	5		Resu	lts			
Side of EUT	± 2 KV	r	± 4 KV	Pass	Fail	Performance Criterion			
Front			\boxtimes	\square					
Back			\boxtimes	\square		$\Box \mathbf{A} \boxtimes \mathbf{B}$			
Left	\boxtimes		\boxtimes	\boxtimes		$\Box \mathbf{A} \boxtimes \mathbf{B}$			
Right	\boxtimes		\boxtimes	\square		$\Box \mathbf{A} \boxtimes \mathbf{B}$			
]	Discharge T	o Vertical C	Coupling Pla	ane				
		Test Levels	5		Resu	lts			
Side of EUT	± 2 KV	7	± 4 KV	Pass	Fail	Performance Criterion			
Front			\boxtimes	\square					
Back	\boxtimes		\boxtimes	\square		$\Box A \boxtimes B$			
Left	\square		\boxtimes	\square		$\Box A \boxtimes B$			
Right	\square		\boxtimes	\square		$\Box \mathbf{A} \boxtimes \mathbf{B}$			

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 31 of 59

10. RF FIELD STRENGTH SUSCEPTIBILITY TEST

10.1.Block Diagram of Test Setup

10.2.Test Standard

EN 61547: 2009 (EN 61000-4-3: 2006+A1: 2008, Severity Level: 2, 3V / m)

10.3. Severity Levels and Performance Criterion

10.3.1.Severity level

Level	Field Strength (V/m)	
1	1	
2	3	
3	10	
X	Special	

10.3.2.Performance criterion: **A**

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 32 of 59

10.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.8.

10.5.Operating Condition of EUT

10.5.1.Setup the EUT as shown in Section 10.1.

10.5.2.Turn on the power of all equipments.

10.5.3.Let the EUT work in test mode (On) and measure it.

10.6.Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually. In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

Condition of Test		Remarks	
1.	Fielded Strength	3 V/m (Severity Level 2)	
2.	Radiated Signal	Unmodulated	
3.	Scanning Frequency	80 - 1000 MHz	
4.	Dwell time of radiated	0.0015 decade/s	
5.	Waiting Time	3 Sec.	

10.7.Test Results

PASS.

Please refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 33 of 59

RF Field Strength Susceptibility Test Results

Standard	□ IEC 61000-4-3 ☑ EN 61000-4-3			
Applicant Tea-Energy China Limited				
EUT	LED Motion Sensor	r Ceiling Light	Temperature	26℃
M/N	CL-028-S-NW-00		Humidity	51%
Field Strength	3 V/m		Criterion	А
Test Mode	ON		Test Engineer	Tiny
Frequency Range	80 MHz to 1000 MI	Hz		
Modulation	□None [🗆 Pulse 🛛	AM 1KHz 80%	
Steps	1%			

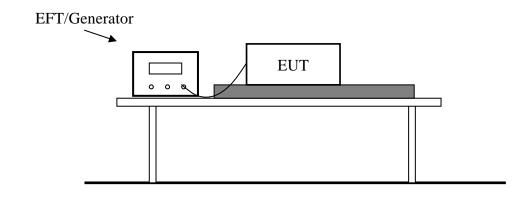
	Horizontal	Vertical
Front	PASS	PASS
Right	PASS	PASS
Rear	PASS	PASS
Left	PASS	PASS

Test Equipment:

1. Signal Generator: 2031 (MARCONI)

2. Power Amplifier: 500A100 & 100W/1000M1 (A&R)

3. Power Antenna: 3108 (EMCO) & AT1080 (A&R)


4. Field Monitor: FM2000 (A&R)

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 34 of 59

11. ELECTRICAL FAST TRANSIENT/BURST TEST

11.1.Block Diagram of Test Setup

11.2.Test Standard

EN 61547: 2009 (EN 61000-4-4: 2012, Severity Level: Level 2: 1KV)

11.3.Severity Levels and Performance Criterion

11.3.1.Severity level

Open Circuit Output Test Voltage ±10%					
Level	On Power Supply	On I/O (Input/Output)			
	Lines	Signal data and control lines			
1.	0.5 KV	0.25 KV			
2.	1 KV	0.5 KV			
3.	2 KV	1 KV			
4.	4 KV	2 KV			
X	Special	Special			

11.3.2.Performance criterion: **B**

11.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.9.

11.5.Operating Condition of EUT

11.5.1.Setup the EUT as shown in Section 11.1.

11.5.2.Turn on the power of all equipments.

11.5.3.Let the EUT work in test mode (ON) and measure it.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 35 of 59

11.6.Test Procedure

The EUT is put on the table which is 0.8 meter high above the ground. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m.

11.6.1.For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 mins.

11.6.2.For signal lines and control lines ports: No I/O ports. It's unnecessary to test.

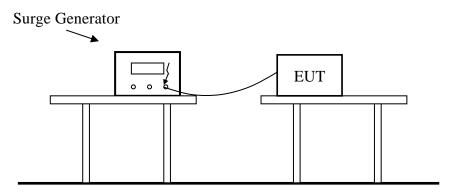
11.6.3.For DC output line ports: It's unnecessary to test.

11.7.Test Results

PASS.

Please refer to the following page.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 36 of 59


Electrical Fast Transient/Burst Test Results						
Standard	□ IEC 61000-4-4 ☑ EN 61000-4-4					
Applicant	Tea-Energy China Limited					
EUT	LED Motion Sensor Ceiling Light Temperature 26°C					
M/N	CL-028-S-NW-00 Humidity 51%					
Test Mode	ON Criterion B					
Test Engineer	Tiny					

Line	Test Voltage	Result (+)	Result (-)
L	1KV	PASS	PASS
Ν	1KV	PASS	PASS
PE			
L-N	1KV	PASS	PASS
L-PE			
N-PE			
L-N-PE			
Signal Line			
I/O Cable			
Note:	·		

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 37 of 59

12. SURGE IMMUNITY TEST

12.1.Block Diagram of Test Setup

12.2.Test Standard

EN 61547: 2009 (EN61000-4-5: 2006, Severity Level: Line to Line: Level 1, 0.5KV; Line to Earth: Level 3, 2.0KV)

12.3. Severity Levels and Performance Criterion

12.3.1.Severity level

Severity Level	Open-Circuit Test Voltage
	(KV)
1	0.5
2	1.0
3	2.0
4	4.0
*	Special

12.3.2.Performance criterion: **B**

12.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.10

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 38 of 59

12.5.Operating Condition of EUT

- 12.5.1.Setup the EUT as shown in Section 12.1.
- 12.5.2.Turn on the power of all equipments.
- 12.5.3.Let the EUT work in test mode (ON) and measure it.

12.6.Test Procedure

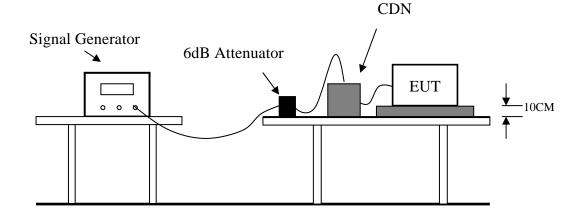
- 12.6.1.Set up the EUT and test generator as shown on Section 12.1.
- 12.6.2.For line to line coupling mode, provide a 1.0KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- 12.6.3.At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- 12.6.4. Different phase angles are done individually.
- 12.6.5.Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

12.7.Test Results

PASS.

Please refer to the following page.

Surge Immunity Test Result					
Standard	□ IEC 61000-4-5 ☑ EN 61000-4-5				
Applicant	Tea-Energy China Limited				
EUT	LED Motion Sensor Ceiling Light	Temperature	26℃		
M/N	CL-028-S-NW-00	Humidity	51%		
Test Mode	ON	Criterion	В		
Test Engineer	Tiny				


Location	Polarity	Phase Angle	Number of Pulse	Pulse Voltage (KV)	Result
	+	0°	5	1.0	PASS
	+	90°	5	1.0	PASS
	+	180 [°]	5	1.0	PASS
	+	270°	5	1.0	PASS
L-N	-	0°	5	1.0	PASS
	-	90°	5	1.0	PASS
	-	180°	5	1.0	PASS
	-	270°	5	1.0	PASS
L-PE N-PE					
Signal Line					
Note					

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 40 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 41 of 59

13. INJECTED CURRENTS SUSCEPTIBILITY TEST

13.1.Block Diagram of Test Setup

13.2.Test Standard

EN 61547: 2009 (EN 61000-4-6: 2013, Severity Level: 3V (rms), 0.15MHz ~ 80MHz)

13.3. Severity Levels and Performance Criterion

13.3.1.Severity level

Level	Field Strength (V)
1.	1
2.	3
3.	10
Х	Special

13.3.2.Performance criterion: A

13.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.11.

13.5.Operating Condition of EUT

- 13.5.1.Setup the EUT as shown in Section 13.1.
- 13.5.2.Turn on the power of all equipments.
- 13.5.3.Let the EUT work in test mode (ON) and measure it.

13.6.Test Procedure

- 13.6.1.Set up the EUT, CDN and test generators as shown on Section 13.1.
- 13.6.2.Let the EUT work in test mode and measure it.
- 13.6.3.The EUT are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane about 0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- 13.6.4. The disturbance signal described below is injected to EUT through CDN.
- 13.6.5. The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- 13.6.6.The frequency range is swept from 150kHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1kHz sine wave.
- 13.6.7.The rate of sweep shall not exceed 1.5*10-3decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- 13.6.8.Recording the EUT operating situation during compliance testing and decide the EUT immunity criterion.

13.7.Test Results

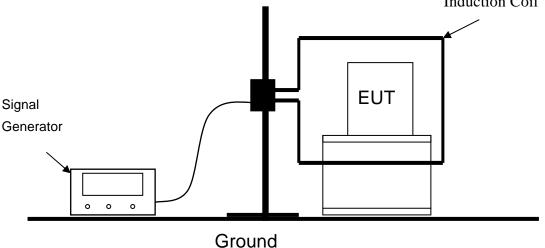
PASS.

Please refer to the following page.

Injected Currents Susceptibility Test Results					
Standard	□ IEC 61000-4-6 ☑ EN 61000-4-6				
Applicant	Tea-Energy China Limited				
EUT	LED Motion Sensor Ceiling Light	Temperature	26°C		
M/N	CL-028-S-NW-00 Humidity 51%				
Test Mode	ON Criterion A				
Test Engineer	Tiny				

Frequency Range (MHz)	Injected Position	Strength (Unmodulated)	Criterion	Result
0.15 ~ 80	AC Mains	3V	А	PASS

Remark:


- 1. Modulation Signal:1kHz 80% AM
- 2. Measurement Equipment:
 - Simulator: CIT-10 (FRANKONIA)
 - CDN : ☑CDN-M2 (FRANKONIA)
 - CDN-M3 (FRANKONIA)

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 43 of 59

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 44 of 59

14. MAGNETIC FIELD IMMUNITY TEST

14.2.Test Standard

EN 61547: 2009 (EN 61000-4-8: 2010, Severity Level 2: 3A/m)

14.3. Severity Levels and Performance Criterion

1	4	.3.	.1	.Se	verity	level	
-	• •		-	•~ •			

Level	Magnetic Field Strength (A/m)
1.	1
2.	3
3.	10
4.	30
5.	100
X	Special

14.3.2.Performance criterion: A

14.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.12.

Induction Coil

14.5.Operating Condition of EUT

14.5.1.Setup the EUT as shown in Section 14.1.

14.5.2.Turn on the power of all equipments.

14.5.3.Let the EUT work in test mode (On) and measure it.

14.6.Test Procedure

14.6.1.Set up the EUT system as shown on Section 14.1.

14.6.2. The Induction coil is set up in horizontal or vertical.

14.6.3.Let the EUT work in test mode and measure it.

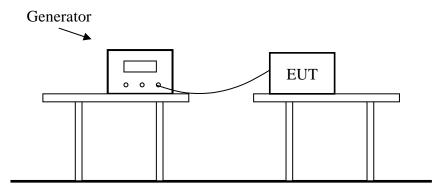
14.7.Test Results

PASS.

Please refer to the following page.

Report No.: LCS1412030151E

Magnetic Field Immunity Test Result						
Standard	□ IEC 61000-4-8 ☑ EN 61000-4-8	□ IEC 61000-4-8 ☑ EN 61000-4-8				
Applicant	Tea-Energy China Limited					
EUT	LED Motion Sensor Ceiling Light	Temperature	26℃			
M/N	CL-028-S-NW-00	Humidity	51%			
Test Mode	ON	Criterion	А			
Test Engineer	Tiny					


Test Level (A/M)	Testing Duration	Coil Orientation	Criterion	Result
3	5 mins	Х	А	PASS
3	5 mins	Y	А	PASS
3	5 mins	Z	А	PASS

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 46 of 59

15. VOLTAGE DIPS AND INTERRUPTIONS TEST

15.1.Block Diagram of Test Setup

15.2.Test Standard

EN 61547: 2009 (EN 61000-4-11: 2004)

15.3. Severity Levels and Performance Criterion

15.3.1.Severity level

Test Level (%UT)	Voltage dip and short interruptions (%UT)	Duration (in period)
0	100	0.5
70	30	10

15.3.2.Performance criterion: **B&C**

15.4.EUT Configuration on Test

The configuration of EUT are listed in Section 3.13&3.14.

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 47 of 59

15.5.Operating Condition of EUT

15.5.1.Setup the EUT as shown in Section 15.1.

15.5.2.Turn on the power of all equipments.

15.5.3.Let the EUT work in test mode (ON) and measure it.

15.6.Test Procedure

15.6.1.Set up the EUT and test generator as shown on Section 15.1.

15.6.2. The interruptions is introduced at selected phase angles with specified duration.

15.6.3.Record any degradation of performance.

15.7.Test Results

PASS.

Please refer to the following page.

Report No.: LCS1412030151E

Voltage Dips And Interruptions Test Results			
Standard	□ IEC 61000-4-11 ☑ EN 61000-4-11		
Applicant	Tea-Energy China Limited		
EUT	LED Motion Sensor Ceiling Light	Temperature	26°C
M/N	CL-028-S-NW-00	Humidity	51%
Test Mode	ON	Criterion	B&C
Test Engineer	Tiny		

Test Level % U _T	Voltage Dips & Short Interruptions % U _T	Duration (in periods)	Criterion	Result
0	100	0.5P	В	PASS
70	30	10P	С	PASS

Note:

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 49 of 59

16. PHOTOGRAPH

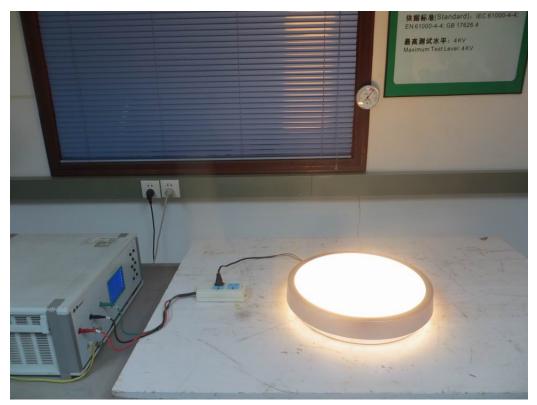
16.1. Photo of Power Line Conducted Measurement

16.2. Photo of Radiated Electromagnetic Disturbance Measurement

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 50 of 59

16.3. Photo of Radiated Measurement

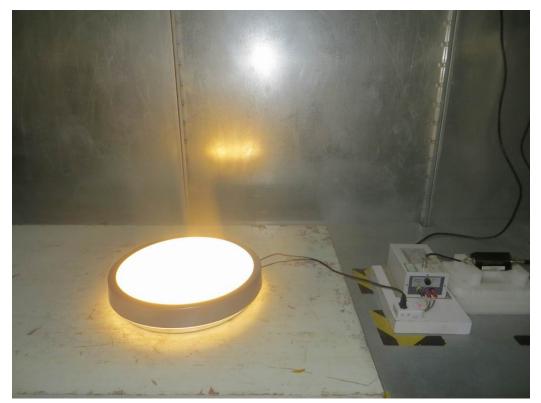
16.4. Photo of Harmonic & Flicker Measurement



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 51 of 59

16.5. Photo of Electrostatic Discharge Test

16.6. Photo of Electrical Fast Transient/Burst Test



This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 52 of 59

16.7. Photo of Surge Immunity Test

16.8. Photo of Injected Currents Susceptibility Test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 53 of 59

16.9. Photo of Magnetic Field Immunity Test

16.10. Photo of Voltage Dips and Short Interruptions Immunity Test

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 54 of 59

17. EXTERNAL AND INTERNAL PHOTOS OF THE EUT

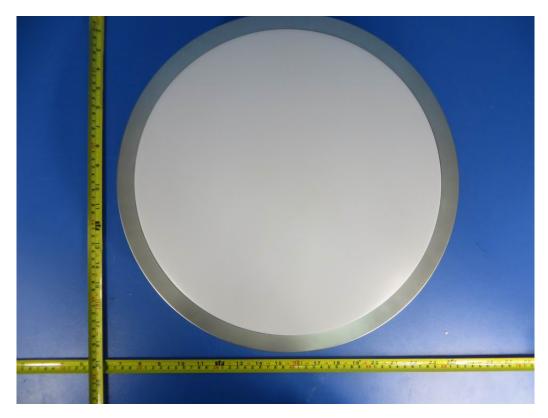


Fig. 1

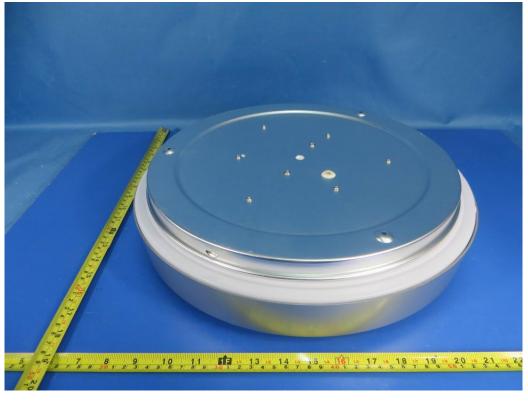


Fig. 2

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 55 of 59

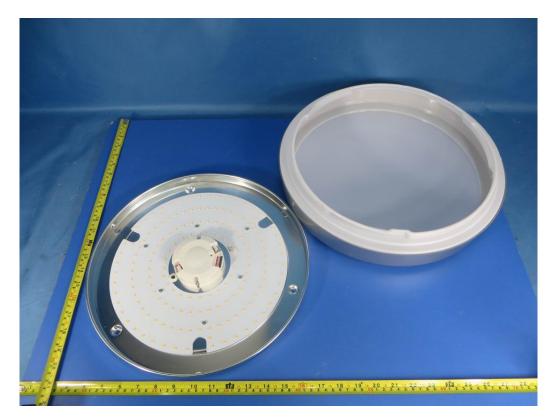
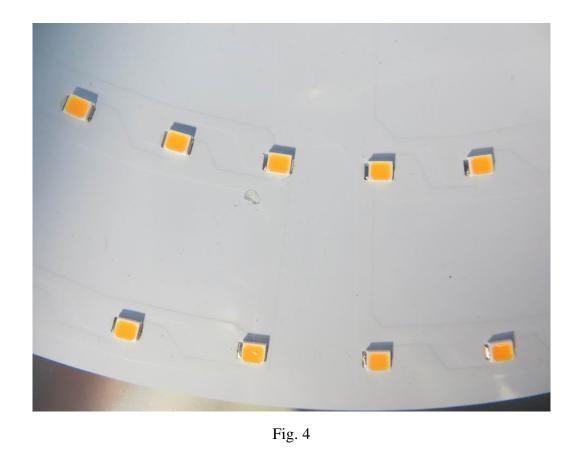



Fig. 3

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 56 of 59

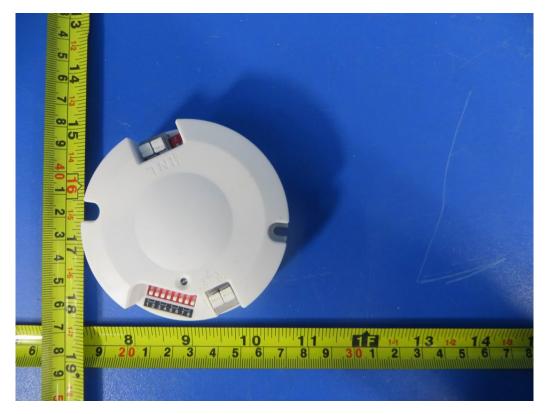


Fig. 5

Fig. 6

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 57 of 59

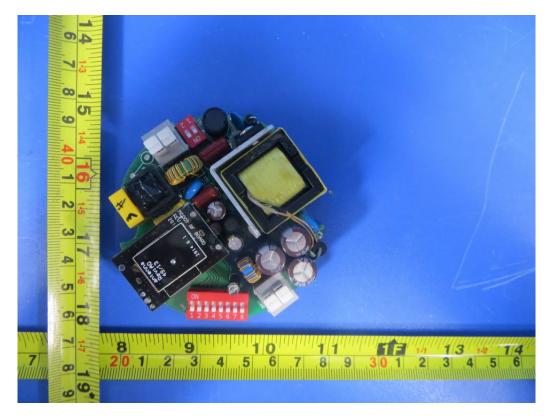


Fig. 7

Fig. 8

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 58 of 59

18. MANUFACTURER/ APPROVAL HOLDER DECLARATION

The following identical model(s):

CL-XXX-S-YY-BB		
(XXX-Stands for Power(028-28W), S-Stands for Micro-Wave motion Sensorbility, YY-Stands for color temperature(CW-Cool White,		
NW-Natural White, WW-Warm White), BB-Stands for Flow Code(00-99)).		

Belong to the tested device:

Product description	:	LED Motion Sensor Ceiling Light
Model name	:	CL-028-S-NW-00

Remark: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.

-----THE END OF REPORT------

This report shall not be reproduced except in full, without the written approval of Shenzhen LCS Compliance Testing Laboratory Ltd. Page 59 of 59